
	
	

User	Manual	
	

	
	
	
	
	
	

By:	
William	Weaver1	
Julienne	Ng1	
Robert	Laport2	

	
	

1) University	of	Colorado	at	Boulder,	Department	of	Ecology	and	Evolutionary	Biology	
2) Rhodes	College,	Department	of	Biology	

	
	

Last	Edited:	January	6,	2020	
Software	Version	–	2.0	

 	

2
LeafMachine User Manual

Table of Contents

OVERVIEW 3

LEAFMACHINE SYSTEM REQUIREMENTS 5

HARDWARE REQUIREMENTS 5
SOFTWARE REQUIREMENTS 6

DOWNLOADING LEAFMACHINE 7

USING LEAFMACHINE – GUI OVERVIEW 14

1) SETUP TOOLS 14
2A) PROCESS DARWIN CORE IMAGES FROM URL 15
2B) PROCESS DARWIN CORE IMAGES FROM A LOCAL FOLDER 15
3) LEAFMACHINE OUTPUT DIRECTORY 15
4) BATCH PROCESSING OPTIONS 15

LEAFMACHINE DEMO FILES 17

LEAFMACHINE OUTPUT – DIRECTORIES AND EXAMPLES 18

THREE EXAMPLE SCENARIOS 24

LEAFMACHINE ALGORITHMS AND EVALUATION 26

SEMANTIC SEGMENTATION (CNN) 26
CONFUSION MATRICES 27
ACCURACY BY SEGMENTATION CLASS 29
SUPPORT VECTOR MACHINE (SVM) 30
FILENAMES 30
PROCESSING TIME 31

DARWIN CORE STANDARD 32

3
LeafMachine User Manual

Overview	

LeafMachine is a MATLAB-based software package designed to autonomously extract leaf area
measurements from digitized herbarium specimen vouchers. At this time, a license to use MATLAB
2019b is required to use LeafMachine. MATLAB installation instructions are provided below; two
additional MATLAB toolboxes and one MATLAB Add-On are also required to use LeafMachine.

Through a graphical user interface (GUI), a user can process a batch of images on their local computer
in the three most popular environments: Mac, Windows, or Linux. LeafMachine has two image
processing options designated by “2A” and “2B” in the GUI. A detailed explanation of intended use
cases can be found in the section “Three Example Scenarios.” Additionally, LeafMachine contains setup
tools that can be used to subset a larger dataset or download images using the LeafMachine naming
convention. These tools, in section “1” of the LeafMachine GUI, are optional and are used in specific
circumstances described later in this manual. LeafMachine saves numerous output files for each
specimen, which is described in detail in the LeafMachine Output section of the user manual. At this
time, LeafMachine saves measurements in pixels not metric areas. A conversion factor can be applied
post-processing based on a manual measurement of a ruler in the image.

2A. Download and process images from a URL directly from a set of Darwin Core files

● This option allows a user to select images for processing based on the contents of an
“images.csv” file and an “occurrences.csv” file that adhere to the Darwin Core standard.

● Using path 2A, LeafMachine reads the “images.csv” file and matches the coreID numbers in
the first column with the corresponding id number in the “occurrences.csv” file.

● Since LeafMachine starts with the “images.csv,” we provide a tool to filter the “images.csv”
based on a given “occurrences.csv” file.

● The “images.csv” file often does not contain any identifying information other than the
coreID number. So if a user only wants to analyze specimens from the genus Ginkgo, they
could delete all non-Ginkgo rows from their “occurrences.csv” file and use the “Generate
Custom “images.csv” File” tool to create a new “images_Custom.csv” file containing only
the image URLs for their desired specimens. The new “images_Custom.csv” file can then be
used for path 2A with the corresponding “occurrences.csv” file.

i. This process also checks for broken URLs.
● More information about the Darwin Core standard can be found in section “Darwin Core

Standard” section of the user manual.

4
LeafMachine User Manual

2B. Process images from an existing local directory
● Path 2B allows a local directory of existing images to be processed by LeafMachine.
● The following image file types are supported:

i. .jpg
ii. .jpeg

iii. .png
● Any directory of images can be processed, but the existing filenames may not be desirable.

It is common practice for herbaria to name image files with only a catalog number e.g.
“00235240.jpg” while LeafMachine names each file in the format:
HerbaiumCode_CatalogNumber_Family_Genus_Species.jpg. This file format makes manual
QC and data analysis simpler for the user.

● LeafMachine uses the family name as one of the eleven variables in the SVM process. If an
image is saved in the format “00235240.jpg,” then the algorithm will use the ten other
variables. If the LeafMachine filename format is used (by downloading images using the
third tool in section 1 of the LeafMachine GUI), then LeafMachine can parse the filename
and obtain the family name.

● The filename format does not need to match the LeafMachine format exactly. As long as the
family name is isolated by underscores, LeafMachine will be able to parse the filename and
use the family name. For example, the filename “Solanaceae_image_1.jpg” would allow
LeafMachine to obtain the family name, while “SolanaceaeImage1.jpg” would not.

● A download tool at the bottom of the LeafMachine GUI section 1 allows users to download
images from URLs. This function uses Darwin Core “images.csv” and “occurrences.csv” files
to create an image filename that is more informative than a typical herbarium image
filename.

5
LeafMachine User Manual

LeafMachine System Requirements

Hardware Requirements
● CPU - Modern Intel or AMD multicore processor

o Note: A higher single-core CPU clock speed improves performance more than a high-core
count.

● RAM
o At least 8 GB of system memory if using a GPU
o At least 16 GB of system memory without a GPU

● GPU
o A Nvidia CUDA-capable GPU is recommended to take advantage of GPU acceleration for the

semantic segmentation process but is not required.
● Hard disk space

o To estimate storage space requirements, multiply the total size of the input images by a
factor of five. More space is required if the “save high quality images” option is selected.
Less space is required if fewer output options are chosen than what is set by default.

o If 1,000 input images take up 1 GB, then the total output size will be around 5 GB.

Estimated Processing Time per Image by Computer System Specifications

System CPU GPU RAM
Storage
Space

Avg. Processing
Time per Image

MacBook Air
(2013)

Intel Core i5 2.8 GHz N/A 8 GB 128 GB
2MP – 40 sec.

21MP – 310 sec.

MacBook Pro
15” (2017)

Intel Core i7 3.1 GHz N/A 16 GB 1 TB
2MP – 14 sec.

21MP – 114 sec.

High-end
Consumer PC

Intel Core i7-8700K
4.8 GHz

Nvidia GeForce RTX
2070 8 GB VRAM

32 GB 2 TB
2MP – 9 sec.

21MP – 71 sec.

Mid-tier
Workstation

Intel Xeon E3-1245 v6
3.7 GHz

Nvidia Quadro P4000
8 GB VRAM

64 GB 10 TB
2MP – 12 sec.

21MP – 88 sec.

High-end
Workstation

Intel Xeon W-2145
4.5 GHz

Nvidia Quadro P6000
24 GB VRAM

128 GB 12 TB
2MP – 8 sec.

21MP – 69 sec.

Table 1: Average processing times were calculated by running the demo validation images on each computer. The
average processing time per specimen was similar with large batches. The high-end consumer grade PC averaged one
specimen every 10.2 seconds for a 9,940-image low-resolution batch and the high-end workstation averaged one
specimen every 204 seconds for a 9,940-image high-resolution batch. The number of leaf candidate masks (LCMs)
processed by the support vector machine (SVM) drives deviations from the average.

6
LeafMachine User Manual

Software Requirements
LeafMachine is built with MATLAB 2019b. Running the software requires a MATLAB license. To install
MATLAB on your local machine, navigate to:

https://www.mathworks.com/downloads/web_downloads/download_release?release=R2019b

Download MATLAB 2019b for your operating system. Follow the installation instructions and login to
your Mathworks account when prompted. When installing on MacOS, you will also need to install
Xcode from the Apple App Store. MATLAB may ask to install a C compiler, please accept and continue
installation. During installation you will be asked to select which MATLAB toolboxes to install. If you
have enough hard drive space (37 GB) you can install all of the toolboxes, otherwise install the MATLAB
recommended toolboxes including:

● MATLAB 9.7
● Simulink 10.0
● Computer Vision Toolbox 9.1
● Control System Toolbox 10
● Deep Learning Toolbox 13.0
● DSP System Toolbox 9.9
● Image Processing Toolbox 11.0
● Instrument Control Toolbox 4.1
● Optimization Toolbox 8.4
● Parallel Computing Toolbox 7.1
● Signal Processing Toolbox 8.3
● Simulink Control Design 5.4
● Statistics and Machine Learning

Toolbox 11.6
● Symbolic Math Toolbox 8.4

Screenshots used in this manual are
taken from MacOS and may appear slightly different for Windows or Linux users.

7
LeafMachine User Manual

Downloading LeafMachine
	

1. Navigate to https://github.com/Gene-Weaver/LeafMachine and click the green “Clone or
download” button. Select “Download ZIP” and extract the contents using your preferred tool.

2. Move the folder called “LeafMachine-V.2.0” to a permanent location. We recommend that you

create an output directory in the same location, in this case we called the output directory
“LeafMachine_Output.”

8
LeafMachine User Manual

Move to a permanent location.

3. An additional tool is required to run LeafMachine. Open MATLAB 2019b, in the “Home” tab locate
the “Add-Ons” button and click “Get Add-Ons.” Search for “Deep Learning Toolbox Model for
ResNet-18 Network” published by the MathWorks Deep Learning Toolbox Team. Follow the
installation instructions.

9
LeafMachine User Manual

If the error below appears when LeafMachine initiates, the ResNet18 toolbox was not installed.

4. Inside the “LeafMachine-V.2.0” folder is a file called “LeafMachine.m” which will initiate
LeafMachine. Right-click this file and open it with MATLAB 2019b. Doing this will set the MATLAB
working directory to the “LeafMachine-V.2.0” directory. Notice that the LeafMachine folders in the
Current Folder window are light gray - they are not yet in the MATLAB path.

10
LeafMachine User Manual

5. In order to run LeafMachine, all associated files must be added to the MATLAB path. Right-click
“LeafMachine-V.2.0” and “LeafMachine_Output” and select “Add to Path” and then “Selected
Folders and Subfolders.”

6. To start LeafMachine, either push the triangular green “Run” button or type “LeafMachine” into
the Command Window. A GPU check will run and try to find an available GPU, the result will be
displayed in the Command Window. If your machine has multiple GPUs, the first device will be
selected. The green box indicates your working directory, make sure this is set to the location
where all LeafMachine files are saved.

11
LeafMachine User Manual

7. To run LeafMachine, press the “Run” button.

12
LeafMachine User Manual

8. The main LeafMachine GUI will appear with default options selected.

9. The LeafMachine GUI has five main sections described in detail in the “Using LeafMachine – GUI

Overview” section of the user manual:
1) Setup tools
2A) Processing from Darwin Core files
2A) Processing local images
3) Setting output directory
4) Setting LeafMachine parameters

13
LeafMachine User Manual

10. After selecting options, the Command Window will display updates, like the example below, as
LeafMachine processes each image.

14
LeafMachine User Manual

Using LeafMachine – GUI Overview

1) Setup Tools

Generate Custom “images.csv” File

LeafMachine processes a batch of images by iterating through the “images.csv” file and matching the
first column coreid to the coreid found in the associated “occurrences.csv” file. This order was chosen
because many Darwin Core specimen entries do not have an associated image. When choosing images
to process, a user is unlikely to need to process an entire collection, so only a portion of a full Darwin
Core file will be used.

The “occurrences.csv” file contains identifying information such as family, genus, species, etc. A user
can save only the rows of interest as the input for LeafMachine. However, due to the way LeafMachine
processes images, a new “images.csv” file must be generated first. The only identifying information in a
Darwin Core “images.csv” file is the coreid, so this LeafMachine setup tool matches a user’s custom,
shortened “occurences.csv” file with the full Darwin Core “images.csv” file to generate a new custom
“images.csv” file that can then be used to process images with LeafMachine. During this process three
files are generated:

▪ Images_Custom.csv
▪ Occurrences_NoImages.csv
▪ Occurrencs_WithImages.csv

The first and third files can then be used to process your images with the LeafMachine 2A) option. The
second file will contain a list of the Darwin Core specimens that are not accessible by URL.

Set Family/Genus/Species Filter

Users can create a list of desired families, genera, and species to filter the inputs for the LeafMachine
2A) option. This filter will not work for the LeafMachine 2B) option. The input file needs to be a single
column .csv file with a header – the name of the header does not matter.

Selecting family, genus, or species will tell LeafMachine which filter type to sort by. As a result, it is
possible to have families, genera, and species mixed into the same filter file, but LeafMachine will only
filter for one taxonomic rank at a time.

Download Darwin Core Images to Local Computer

This setup tool will download images from a pair of “images.csv” and “occurrences.csv” Darwin Core
files, saving the images in the format HerbariumCode_catalogNumber_Family_Genus_Species.jpg using
as much information as is present in the “occurrences.csv” file. Processing images from a local machine
is an alternative method of using LeafMachine. We recommended that files are downloaded in this
way if you are planning to use the LeafMachine 2B) option.

If you plan to run LeafMachine on a local directory that contains image files saved in a different
filename format, the LeafMachine output files will be more difficult to interpret, since the LeafMachine

15
LeafMachine User Manual

2B) option populates output data with information from the filename. Often, herbaria save images
using the catalog number, which will make assessing the output files tedious.

2A) Process Darwin Core Images from URL

For more information about Darwin Core files, see the “Darwin Core Standard” section.

1. Choose your “images.csv” file.
▪ This is either the standard Darwin Core file that ties an occurrence record to an image

stored on a remote server, or a custom file generated by the “Generate Custom
“images.csv” File” tool mentioned above.

2. Choose your “occurrences.csv” file.
▪ This is the standard Darwin Core file containing an herbarium specimen occurrence

record, or a shortened version containing only specimens of interest.
3. Select whether you want to process the high-resolution version or the low-resolution version.

Note that some herbaria only share low resolution images publicly.
4. Optional: If your “image.csv” does not follow Darwin Core standards or the column header

names do not exactly match the headers of the example input files provided with LeafMachine,
then you can type in the header name of the column that contains the URLs. This feature is not
recommended.

2B) Process Darwin Core Images from a Local Folder

Choose the directory that contains the images you want to process with LeafMachine. LeafMachine
can handle most common image formats, but we recommend processing .jpg, .jpeg, or .png files if
possible. This directory should contain only the images that you intend to process.

3) LeafMachine Output Directory

Choose the location where LeafMachine output files will be stored. In the file structure shown above,
we would choose “LeafMachine_Output.”

4) Batch Processing Options

● Use GPU

o If selected, LeafMachine will use a GPU to accelerate the semantic segmentation algorithm.
If this option is selected but a GPU is unavailable, LeafMachine will default to processing
with the CPU only. LeafMachine is not parallelized for multi-GPU setups. By default, only the
first GPU will be selected.

● Save overlay image
o This is the best way to visually inspect the LeafMachine output but can be disabled to save

time or reduce the overall size of the output files.

16
LeafMachine User Manual

● Save high quality image
o This option will save the overlay images in a higher quality .png format. Only use this option

if you are processing a small number of images.
● Save all leaf candidate masks

o This option will save all rejected leaf candidate masks, which can number in the tens of
thousands for large batches.

● Save individual image data files
o This will save a .csv data file for each processed image.

● Fill in holes within
o If selected, this uses the MATLAB function imfill() to fill in holes in the semantic

segmentation mask generated by the convolutional neural network. This is helpful for
reducing noise caused by less than ideal CNN predictions, but will also fill in real holes
caused by damage or herbivory. We recommend that this option stay turned off unless you
notice excessive gaps or holes in the overlay images. The imfill() procedure is applied after
the support vector machine makes a prediction for a given leaf candidate mask.

● Add suffix to all output files
o This will add a suffix to every output file. This can be helpful if you have multiple batches to

run but want to use the same output directory. For example, if you want to run one batch
without filling in holes, you can leave the suffix textbox blank. Then if you select “fill in holes
for ‘leaf’ masks” you could type “filled_in” in the suffix text box, while keeping the directory
chosen in the LeafMachine 3) option the same. Running a batch a second time without
adding a suffix while using the same output directory may result in overwriting the output
data files.

● Temp Save Frequency
o Determines how frequently the temporary data file is saved to the “Data_Temp” folder. For

example, setting this value to 10 would save a copy of the data output file every tenth
image. This is useful if the power goes out or you need to stop a run for any reason. You can
resume where you left off or at the minimum, not lose data.

● Other
o Close GUI

▪ Closes the LeafMachine GUI. If you want to abort mid-run, type CTRL+C into the
Command Window. This will force quit the run. To reinitialize LeafMachine, click the
“Run LeafMachine” button in the LeafMachine launch window.

o Run
▪ Start processing images. If 3) has not been set, you will be prompted to set an output

directory first. When a run is successfully completed, the Run button will turn blue
and say “Reset”. Pressing reset will reinitialize LeafMachine and you can begin a new
run.

17
LeafMachine User Manual

LeafMachine Demo Files

Inside LeafMachine-V.2.0 is a folder called “LeafMachine_Demo” that contains verified example
datasets and demonstrates the necessary file formats. Included is an “images_Example.csv” file with 20
example images (15 specimens from COLO, 5 specimens from SWMT) and an
“occurrences_Example.csv” file that has merged COLO and SWMT occurrence entries from the publicly
available Darwin Core files obtained through a database such as the SERNEC Portal.

To process these files, follow the steps to implement the LeafMachine 2A) panel, set an output
directory in the LeafMachine 3) panel, set processing settings in the LeafMachine 4) panel, and press
“Run.” For reference, the output you should produce from running these example files is given in the
“Output_HighRes” and “Output_LowRes” folders.

Additionally, we have provided 12 high-resolution and 12 low-resolution mock-vouchers that we used
to validate LeafMachine’s performance located in the “Validation_Images” folder. These can be
processed using the LeafMachine 2B) panel.

18
LeafMachine User Manual

LeafMachine Output – Directories and Examples
Below is a list of the output directories, as well as an example of the files stored in each. Most use
examples from the LM_Validate_2.jpg image included in the “Demo” folder. The example for
fruit/flower is not from the LM_Validate set, since it contains no fruit/flowers class objects, as well as
for leaf clump and leaf partial. Image orientations may be altered to minimize the space taken within
this document.
• Class_Background

o Stores full-image binary mask of background identified pixels.

• Class_FruitFlower
o Stores full-image binary mask of fruit/flower identified pixels.

• Class_Leaf
o Stores full-image binary mask of leaf identified pixels.

19
LeafMachine User Manual

• Class_Stem
o Stores full-image binary mask of stem identified pixels.

• Class_Text
o Stores full-image binary mask of text identified pixels.

• Data
o The final data files will be saved here. At this time, measurements are stored in pixels. Users

can apply a conversion factor to get metric units by manually measuring a ruler in the
image.

20
LeafMachine User Manual

• Data_Temp
o Stores a rolling copy of the final output data file. If the option to save an individual data file

for each specimen is selected, the data files will be saved to this directory.

• Leaf
o Stores the binary and RGB cropped leaf candidate masks that LeafMachine deemed to be a

leaf. The examples below were processed with the flood-fill option enabled.

21
LeafMachine User Manual

• Leaf_Clump
o Stores the binary and RGB cropped leaf candidate masks that LeafMachine deemed to be a

clump of leaves.

• Leaf_Fail (if selected in LeafMachine 4) panel)
o If selected in the Batch Processing Options, this stores the binary images of the rejected leaf

candidate masks. The vast majority of images in this directory are noise.

• Leaf_Partial
o Stores the binary and RGB cropped leaf candidate masks that LeafMachine deemed to be a

partial leaf.

• Original (if downloading from URL)

o Stores a copy of the original image.

22
LeafMachine User Manual

• Overlay (if selected in LeafMachine 4) panel)
o Stores an overlay image that outlines each chosen leaf candidate mask. Green outlines

denote a leaf, blue outlines denote a partial leaf, orange outlines denote a clump of leaves.

• Segmentation
o Stores the convolutional neural network output which is a pixel-wise semantically

segmented mask overlaid on the original image.

• Skipped_Files
o Stores a spreadsheet of skipped specimens. LeafMachine may skip a file if the URL is broken

or the download times out after more than 20 seconds.

23
LeafMachine User Manual

Below is an example of the LeafMachine output file structure. The ‘Original’ directory is missing
because this batch used the LeafMachine 2B) option – processing from a local directory.

24
LeafMachine User Manual

Three Example Scenarios

LeafMachine is designed and tested to process images in three scenarios:

1. Process an entire specimen voucher collection using information contained within the
“occurrences.csv” and “images.csv” Darwin Core files.

2. Process a small subset of an entire collection using information contained within the
“occurrences.csv” and “images.csv” Darwin Core files.

3. Process locally stored images within a directory.

Below are model procedures for completing each task.

1. Process an entire collection

a. Example scenario – A researcher looking for all leaf areas in the Sapindaceae family from
the SWMT herbarium.

First, locate and download a set of “occurrences.csv” and “images.csv” Darwin Core files from one of
the many herbaria data portals. Move these files to a permanent location. Initiate LeafMachine and
begin with panel 2A) by loading the files into LeafMachine. If you are using a moderately powerful
computer, select the high-resolution option, otherwise, select the low-resolution option.

Then in Microsoft Excel or another csv editor, create a single column table with the header ‘family’ and
Sapindaceae as the first entry. Save this file and upload it to the filter option in the LeafMachine 1)
panel. Click the family button to set the filter type.

Now set the output directory in the LeafMachine 3) panel. All output files will be saved here in the
same file structure as described in the “LeafMachine Output Directories” section of this user manual.

Finally, set the desired parameters in the LeafMachine 4) panel. We are running this dataset for the
first time, so we will just use the default values. We press run and wait for LeafMachine to finish.

2. Process subset of entire collection

a. Example scenario – A researcher looking for all leaf areas in the four counties that neighbor
a field site.

We obtained a set of “occurrences.csv” and “images.csv” Darwin Core files for both SWMT and COLO
to increase our chances of finding occurrence records in the four counties that are near our field site.
In Excel, we merge the images files and save this copy as “images_Counties.csv”. Then we merge the
occurrences files and sort by county, saving a new occurrences version that contains only the records
for the four counties near our field site as “occurrences_Counties.csv”.

In LeafMachine, we need to generate a new images.csv file from the “images_Counties.csv” and
“occurrences_Counties.csv” files. In the LeafMachine 1) panel we upload the

25
LeafMachine User Manual

“occurrences_Counties.csv” file as well as the merged “images_Counties.csv” file. Then we select an
output directory and push the “generate” button.

From the output directory we upload the “images_Custom.csv” and “occurrencs_WithImages.csv” files
to the LeafMachine 2A) panel. We want both high- and low-resolution results, so we start with the
high-resolution option. Then we set our output directory in the LeafMachine 3) panel and add the
suffix “HR” in the LeafMachine 4) panel. Using default options, we press “Run.”

Now to run the low-resolution images, we reset and replicate the same procedure, but select the low-
resolution button in the LeafMachine 2A) panel and add the suffix “LR” in the LeafMachine 4) panel.
The output directory can be the same as the “HR” run, or we can select a new output directory. Finally,
we can look in the “Overlay” folder within the output directory and compare the results between high
and low resolutions.

3. Process local images

a. Example scenario – A researcher that took their own photos of 40 specimens while visiting
the COLO herbarium. The filenames are whatever the camera called them.

For the best results, we would rename the images in the format
HerbariumCode_catalogNumber_Family_Genus_Species.jpg so that LeafMachine output files are more
user friendly. The original filename was img_00003213.jpg. So, we look at the photo, read the label and
barcode and build a new filename: COLO_01142983_Oleaceae_Fraxinus_americana.jpg. A different
specimen was only identified to the family, so its new filename would be:
COLO_01013002_Solanaceae__.jpg. The extra underscores help LeafMachine populate information,
since LeafMachine is expecting all three taxonomic levels.

After renaming the images, we initiate LeafMachine and select the directory that contains only the
renamed images for the LeafMachine 2B) panel. We set an output directory in the LeafMachine 3)
panel and press “Run.”

26
LeafMachine User Manual

LeafMachine Algorithms and Evaluation

Semantic Segmentation (CNN)
LeafMachine uses a MATLAB provided pretrained ResNet-18 feature detection network stacked in
front of a DeeplabV3+ convolutional neural network (LM-CNN). This combination increased training
speed and segmentation precision. The LM-CNN has 101 layers and accepts 360x360x3 dimensional
inputs. We trained the network for 5 epochs with 122,000 image chips, validating every 10 iterations
with 20,000 image chips, and shuffling the training data each epoch.

LM-CNN Network Map

27
LeafMachine User Manual

Confusion Matrices
The three confusion matrices below illustrate the segmentation class prediction accuracy for a 74-
image testing dataset after training completed. In this case, high-resolution images are 21 megapixels
and low-resolution images are 2.4 megapixels. The LM-CNN performed best with high-resolution
images. Notably, the high-resolution prediction accuracy for the ‘leaf’ class was 63%.

Confusion Matrix – High- and Low-Resolution

28
LeafMachine User Manual

Confusion Matrix – Low-Resolution

29
LeafMachine User Manual

Confusion Matrix – High-Resolution

Accuracy by Segmentation Class

 Low-Resolution High-Resolution
Class Accuracy IoU Accuracy IoU
Leaf 0.566 0.486 0.630 0.561
Stem 0.859 0.260 0.811 0.305
Fruit/Flower 0.380 0.214 0.443 0.270
Background 0.919 0.915 0.951 0.946
Text 0.793 0.214 0.823 0.322
Mean 0.704 0.418 0.733 0.480

 Global

Accuracy
Mean

Accuracy Mean IoU Weighted IoU

High-Resolution 0.921 0.733 0.480 0.892
Low-Resolution 0.886 0.704 0.418 0.853

30
LeafMachine User Manual

Support Vector Machine (SVM)
We used MATLAB’s Classification Learner App to create a support vector machine algorithm to bin
each LCM into one of four categories: leaf, partial leaf, clump, and reject. For ground-truthing, we
manually sorted 197,000 binary LCMs. LCMs with near-perfect leaf outlines and minimal petiole
presence were binned into the ‘leaf’ class. The ‘partial leaf’ class contained LCMs with excessive petiole
presence, inclusion of stems and sticks, and overlapping with no more than one other leaf. The ‘clump’
class contained LCMs with multiple overlapping leaves. The ‘reject’ class contained all other LCMs.
Eleven parameters were calculated for each LCM and became a row in a table used to train the SVM.
LeafMachine uses an AdaBoost decision tree support vector machine that was trained with 20%
holdout validation, 50 splits, 100 learners, and a 0.1 learning rate, yielding an algorithm with an overall
accuracy of 79.9%.

SVM - Confusion Matrix

Filenames
LeafMachine begins with the images file, iterates row by row, matches the coreid number to the
corresponding row in the occurrences file to gather associated information like family name and
catalog number. Importantly, LeafMachine uses the family name to make predictions during the SVM
step – if the family name is available. When downloading from “images” and “occurrences” files
directly using option 2A), the family name is attached to the filename. If processing local images with
option 2B), then LeafMachine will parse the existing filename at each underscore looking for a valid

31
LeafMachine User Manual

family name. If a family name is found, then it will be used in the SVM process. This can be verified by
looking for a family name in the Command Window output as LeafMachine processes a local batch; if
the family name is “NA,” then LeafMachine could not find a valid family name. Without a valid family
name, the SVM process will use 10 variables rather than all 11 variables.

The catalog number typically corresponds to the barcode on the specimen. LeafMachine finds the
catalog number in two ways: (1) by taking the catalog number directly from the corresponding column
in the occurrences file (2) by parsing the catalog number from the end of the URL in the images file.

While LeafMachine is running, both versions can be seen in the Command Window output log. The
second method was tailored to a minority of herbaria that do not have alphabetical letters at the
beginning of their catalog numbers. If a catalog number begins with zeroes, csv files have a tendency of
cutting out the leading zeros. This behavior can be seen for COLO specimens. In an effort to match the
catalog number to the barcode, we attempt to read the URL string and extract the catalog number
from it.

For example, the catalog number SWMT00001 would follow method one, but some catalog numbers
like 00008812 for a COLO specimen would get truncated to 8812 and require the second method. We
chose not to add leading zeros back, since the number of characters in a catalog number vary by
herbarium.

Processing Time
The three most time intensive steps are segmentation, SVM, and exporting the overlay image. The
segmentation time will remain relatively constant for images of a given resolution and primarily
depends on computational power – powerful GPUs will yield faster times. However, the SVM
processing time is proportional to the number of LCM binary objects that need to be analyzed, which
can vary greatly between specimens. Low-resolution images typically have less than 50 LCMs, while
high-resolution images may have as many as 1,000 LCMs. This step is typically the lengthiest step in the
LeafMachine algorithm set. In order to maintain the original image quality, exporting the image overlay
utilizes a custom algorithm rather than using any built-in MATLAB functions. This algorithm takes the
skeleton perimeter boundary of all SVM-selected LCMs, expands the thickness of the perimeter
boundary proportional to the image resolution, and replaces the RGB values in the original image with
the thickened perimeter boundaries.

32
LeafMachine User Manual

Darwin Core Standard	
Darwin Core is a standardized method for storing data that is used by many herbaria. LeafMachine is
designed to use Darwin Core files. Example formats can be seen in the LeafMachine “Demo” folder. It
is possible to format your own data to match Darwin Core standard spreadsheets and then use those
files inputs for LeafMachine. The two file-types used by LeafMachine are the “image.csv” and
“occurrences.csv” files, which reference the stored image URLs and the specimen record data,
respectively.

For more detailed information about Darwin Core, please follow this link and read more:
https://dwc.tdwg.org/

